US009251343B1

a2z United States Patent (10) Patent No.: US 9,251,343 B1
Yincent et al. (45) Date of Patent: Feb. 2, 2016
(54) DETECTING BOOTKITS RESIDENT ON g,%g,}‘}é E} 1(§%88} ;’flidya N
2P0y ostac
COMPROMISED COMPUTERS 6,357,008 Bl 3/2002 Nachenberg
. . . 6,424,627 Bl 7/2002 Sorhaug et al.
(71) Applicant: FireEye, Inc., Milpitas, CA (US) 6,484,315 Bl 11/2002 Ziese
6,487,666 B1 11/2002 Shanklin et al.
(72) Inventors: Michael M. Vincent, Sum.ly\{ale, CA (Continued)
(US); Abhishek Singh, Milpitas, CA
(US); Muhammad Amin, Fremont, CA FOREIGN PATENT DOCUMENTS
(US); Zheng Bu, Fremont, CA (US)
GB 2439806 1/2008
(73) Assignee: FireEye, Inc., Milpitas, CA (US) WO WO0-02/06928 172002
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 183 days. IEEFE Xplore Digital Library Sear Results for “detection of unknown
computer worms”. Hittp//ieeexplore.ieee.org/searchresult.
(21) Appl. No.: 13/841,633 jsp?SortField=Score&SortOrder=desc&ResultC . . ., (Accessed on
. Aug. 28, 2009).
(22) Filed: Mar. 15,2013 (Continued)
(51) Imt.ClL)) .
GO6F 12/14 (2006.01) Primary Examiner — Matthew Henning
GO6F 21/56 (2013.01) (74) Attorney, Agent, or Firm — Rutan & Tucker LLP;
(52) U.S.CL William W. Schaal
CPC ... GO6F 21/56 (2013.01); GO6F 21/566
(2013.01) (57) ABSTRACT
(58) Field of Classification Search Techniques detect bootkits resident on a computer by detect-
CPC oo GOGF 21/56; GOGF 21/566 ing a change or attempted change to contents of boot locations
See application file for complete search history. (e.g., the master boot record) of persistent storage, which may
evidence a resident bootkit. Some embodiments may monitor
(56) References Cited computer operations seeking to change the content of boot
locations of persistent storage, where the monitored opera-
U.S. PATENT DOCUMENTS tions may include API calls performing, for example,
4292.580 A /1981 Ot et al. WRITE, READ or APPEND operations Wl.th respect to the
5175732 A 12/1992 Hendel ct al. contents of the boot locations. Other embodiments may gen-
5,440,723 A 8/1995 Arnold et al. erate a baseline hash of the contents of the boot locations at a
5,537,540 A * 7/1996 Milleretal. 714/38.13 first point of time and a hash snapshot of the boot locations at
5,657473 A 8/1997 Killean et al. a second point of time, and compare the baseline hash and
5,842,002 A 11/1998 Schnurer et al. .
5078917 A 111999 Chi hash snapshot where any difference between the two hash
6.088.803 A 7/2000 Tso et al. values constitutes evidence of a resident bootkit.
6,094,677 A 7/2000 Capek et al.
6,269,330 Bl 7/2001 Cidon et al. 28 Claims, 9 Drawing Sheets
|
Virtual Disk 408 Content Sample
Mca(li:ti::ts Operlantisrt!agniﬁstem Monitoring Module | virtyal Machine
Detection 410 416 404
System
- !
Comm"er Analys‘lts Module Evi_mL Log | | Alert (Earator |
(e.g. VMI
402 2 Hash Generator Q.8. Instance Scheduler

Boot

Record

Storage VM Disk| Operating
Device File System

208 ap | aas 445

Event Log Malicious
File(s) | |Content Files V'g""
448 449

US 9,251,343 B1

Page 2
(56) References Cited 8,225,288 B2 7/2012 Miller et al.
8,225,373 B2 7/2012 Kraemer
U.S. PATENT DOCUMENTS 8,233,882 B2 7/2012 Rogel

8,234,709 B2 7/2012 Viljoen et al.
6,493,756 B1 12/2002 O’Brien et al. 8,239,944 Bl 82012 Nachenberg et al.
6,550,012 Bl 4/2003 Villa et al. 8,286,251 B2 10/2012 Eker et al.
6,775:657 Bl 8/2004 Baker 8,291,499 B2 10/2012 Auziz etal.
6,832,367 Bl 12/2004 Choi et al. 8,307,435 Bl 11/2012 Mann et al.
6,895,550 B2 5/2005 Kanchirayappa et al. 8,307,443 B2 11/2012 Wang et al.
6,898,632 B2 5/2005 Gordy et al. 8,312,545 B2 11/2012 Tuvell et al.
6,907,396 Bl 6/2005 Muttik et al. 8,321,936 Bl 11/2012 Green et al.
6,971,097 Bl 11/2005 Wallman 8,321,941 B2 11/2012 Tuvell et al.
6,981,279 Bl 12/2005 Arnold et al. 8,365,286 B2 12013 Poston
7,007,107 Bl 2/2006 Ivchenko et al. 8,365,297 Bl 1/2013 Parshinetal. 726/26
7,028,179 B2 4/2006 Anderson et al. 8,370,938 Bl 2/2013 Daswani et al.
7,043,757 B2 5/2006 Hoefelmeyer et al. 8,370,939 B2 22013 Zaitsev et al.
7,069,316 Bl 6/2006 Gryaznov 8,375,444 B2 2/2013 Aziz et al.
7,080,408 Bl 7/2006 Pak et al. 8,381,299 B2 2/2013 Stolfo et al.
7,093,002 B2 8/2006 Wolff et al. 8,402,529 Bl 3/2013 Green et al.
7,093,239 Bl 8/2006 van der Made 8,510,827 Bl 82013 Leake et al.
7,100,201 B2 8/2006 Izatt 8,510,842 B2 8/2013 Amit et al.
7,159,149 B2 1/2007 Spiegel et al. 8,516,593 B2 82013 Aziz
7.231,667 B2 6/2007 Jordan 8,528,080 Bl 92013 Aziz
7,240,364 Bl 7/2007 Branscomb et al. 8,539,582 B1 92013 Azizetal.
7,240,368 Bl 7/2007 Roesch et al. 8,549,638 B2 102013 Aziz
7,287,278 B2 10/2007 Liang 8,561,177 B1 10/2013 AZ!Z etal.
7,308,716 B2 12/2007 Danford et al. 8,566,946 Bl 102013 Aziz et al.
7,356,736 B2 4/2008 Natvig 8,584,094 B2 11/2013 Dadhia et al.
7,386,888 B2 6/2008 Liang et al. 8,584,234 B1 11/2013 Sobel et al.
7392.542 B2 6/2008 Bucher 8,584,239 B2 11/2013 Aaziz etal.
7418720 B2 $/2008 Szor 8,595,834 B2 11/2013 Xieetal.
7,428:300 Bl 9/2008 Drew et al. 8,627,476 Bl 1/2014 Satish et al.
7441272 B2 10/2008 Durham et al. 8,635,696 Bl 12014 Aziz
7,448,084 Bl 11/2008 Apap et al. 8,713,681 B2 4/2014 Silberman et al.
7,458,098 B2 11/2008 Judge et al. 9,087,199 B2 7/2015 Sallam ...ccooovviiiinnnnninnns 1/1
7,464,404 B2 12/2008 Carpenter et al. 2001/0005889 Al 6/2001 Albrecht
7.464.407 B2 12/2008 Nakae et al. 2001/0047326 Al 11/2001 Broadbent et al.
7467408 Bl 12/2008 O’Toole. Ir. 2002/0018903 Al 2/2002 Kokubo et al.
7480773 Bl 1/2009 Reed 2002/0038430 Al 3/2002 Edwards et al.
7 487’543 B2 2/2009 Arnold et al. 2002/0091819 Al 7/2002 Melchione et al.
7.496.960 Bl 2/2009 Chen cf al. 2002/0144156 A1 10/2002 Copeland, III
7,496,961 B2 2/2009 Zimmer et al. 2002/0162015 Al 10/2002 Tang
7,519,990 Bl 4/2009 Xie 2002/0166063 Al 11/2002 Lachman et al.
7,523,493 B2 4/2009 Liang et al. 2002/0184528 Al 12/2002 Shevenell et al.
7,530,104 Bl 5/2009 Thrower et al. 2002/0188887 Al 12/2002 Largman et al.
7,540,025 B2 5/2009 Tzadikario 2002/0194490 Al 12/2002 Halperin et al.
7,565:550 B2 7/2009 Liang et al. 2003/0074578 Al 4/2003 Ford et al.
7,603,715 B2 10/2009 Costa et al. 2003/0084318 Al 5/2003 Schertz
7,607,171 Bl 10/2009 Marsden et al. 2003/0115483 Al 6/2003 Liang
7639714 B2 12/2009 Stolfo et al. 2003/0188190 Al 10/2003 Aaron et al.
7644441 B2 1/2010 Schmid etal. 2003/0200460 Al 10/2003 Morota et al.
7,676,841 B2 3/2010 Sobchuk et al. 2003/0212902 Al 11/2003 Van Der Made
7,698’548 B2 4/2010 Shelest et al. 2003/0237000 Al 12/2003 Denton et al.
7,707:633 B2 4/2010 Danford et al. 2004/0003323 Al 1/2004 Bennett et al.
7,779,463 B2 8/2010 Stolfo et al. 2004/0015712 Al 1/2004 Szor
7.784.097 Bl 8/2010 Stolfo et al. 2004/0019832 Al 1/2004 Arnold et al.
7'832.008 Bl 11/2010 Kraemer 2004/0047356 Al 3/2004 Bauer
7.849.506 Bl 12/2010 Dansey et al. 2004/0083408 Al 4/2004 Spiegel et al.
7,869,073 B2 1/2011 Oshima 2004/0093513 Al 5/2004 Cantrell et al.
7,877,803 B2 1/2011 Enstone et al. 2004/0111531 Al 6/2004 Staniford et al.
7,904,959 B2 3/2011 Sidiroglou et al. 2004/0165588 Al 82004 Pandya
7,908,660 B2 3/2011 Bahl 2004/0236963 Al 11/2004 Danford et al.
7,930,738 Bl 4/2011 Petersen 2004/0243349 Al 12/2004 Greifeneder et al.
7 937’761 Bl 5/2011 Bennett 2004/0249911 Al 12/2004 Alkhatib et al.
7.996.556 B2 /2011 Raghavan etal. 2004/0255161 Al 12/2004 Cavanaugh
7,996,836 Bl 8/2011 McCorkendale et al. 2004/0268147 Al 12/2004 Wiederin et al.
7.996.905 B2 8/2011 Arnold et al. 2005/0021740 Al 1/2005 Bar et al.
8006305 B2 /2011 Aziz 2005/0033960 Al 2/2005 Vialen et al.
8010667 B2 82011 Zhang etal. 2005/0033989 Al 2/2005 Poletto et al.
8,020,206 B2 9/2011 Hubbard et al. 2005/0050148 Al 3/2005 Mohammadioun et al.
8,028,338 Bl 9/2011 Schneider et al. 2005/0086523 Al 4/2005 Zimmer et al.
8,045,094 B2 10/2011 Teragawa 2005/0091513 Al 4/2005 Mitomo et al.
8,045,458 B2 10/2011 Alperovitch et al. 2005/0091533 Al 4/2005 Omote et al.
8,069,484 B2 11/2011 McMillan et al. 2005/0114663 Al 5/2005 Cornell et al.
8,087,086 Bl 12/2011 Laietal. 2005/0125195 Al 6/2005 Brendel
8,171,553 B2 5/2012 Aziz et al. 2005/0157662 Al 7/2005 Bingham et al.
8,201,246 Bl 6/2012 Wuetal. 2005/0183143 Al 8/2005 Anderholm et al.
8,204,984 Bl 6/2012 Aziz et al. 2005/0201297 Al 9/2005 Peikari
8,220,055 Bl 7/2012 Kennedy 2005/0210533 Al 9/2005 Copeland et al.

US 9,251,343 B1

Page 3

(56) References Cited 2009/0013408 Al 1/2009 Schipka

2009/0031423 Al 1/2009 Liuet al.

U.S. PATENT DOCUMENTS 2009/0036111 Al 2/2009 Danford et al.

2009/0044024 Al 2/2009 Oberheide et al.
2005/0238005 Al 10/2005 Chen et al. 2009/0044274 Al 2/2009 Budko et al.
2005/0265331 Al 12/2005 Stolfo 2009/0083369 Al 3/2009 Marmor
2005/0283839 Al* 12/2005 COWbUIN ..vvoovveorrveneen. 726/26 2009/0083855 Al 3/2009 Apap et al.
2006/0010495 Al 1/2006 Cohen et al. 2009/0089879 Al 4/2009 Wang et al.
2006/0015715 Al 1/2006 Anderson 2009/0094697 Al 4/2009 Provos et al.
2006/0021054 Al 1/2006 Costa et al. 2009/0125976 Al 5/2009 Wassermann et al.
2006/0031476 Al 2/2006 Mathes et al. 2009/0126015 Al 5/2009 Monastyrsky et al.
2006/0047665 Al 3/2006 Neil 2009/0126016 Al 5/2009 Sobl_(o et al.
2006/0070130 Al 3/2006 Costea et al. 2009/0133125 Al 5/2009 Choi et al.
2006/0075496 Al 4/2006 Carpenter et al. 2009/0158430 Al 6/2009 Borders
2006/0095968 Al 5/2006 Portolani et al. 2009/0187992 Al 7/2009 Poston
2006/0101516 Al 5/2006 Sudaharan et al. 2009/0193293 Al 7/2009 St_olfo et al.
2006/0101517 Al 5/2006 Banzhof et al. 2009/0199296 Al 82009 Xie etal.
2006/0117385 Al 6/2006 Mester et al. 2009/0228233 Al 9/2009 Anderson et al.
2006/0123477 Al 6/2006 Raghavan et al. 2009/0241187 Al 9/2009 Troyansky
2006/0143709 Al 6/2006 Brooks et al. 2009/0241190 AL 9/2009 Todd et al.
2006/0150249 Al 7/2006 Gassen et al. 2009/0265692 A1 10/2009 Godefroid et al.
2006/0161983 Al 7/2006 Cothrell et al. 2009/0271867 Al 10/2009 Zhang
2006/0161987 Al 7/2006 Levy-Yurista 2009/0300415 Al 12/2009 Zhangetal.c.......... 714/19
2006/0161989 Al 7/2006 Reshef et al. 2009/0300761 Al 12/2009 Park et al.
2006/0164199 Al 7/2006 Gilde et al. 2009/0328185 Al 12/2009 Berg et al.
2006/0173992 Al 8/2006 Weber et al. 2009/0328221 A1 12/2009 Blumfield et al.
2006/0179147 Al 8/2006 Tran et al. 2010/0017546 Al 1/2010 Poo et al.
2006/0184632 Al 8/2006 Marino et al. 2010/0043073 Al 2/2010 Kuwamura
2006/0191010 Al 8/2006 Benjamin 2010/0054278 Al 3/2010 Stolfo et al.
2006/0221956 Al 10/2006 Narayan et al. 2010/0058474 Al 3/2010 Hicks
2006/0236393 Al 10/2006 Kramer et al. 2010/0064044 Al 3/2010 Nonoyama
2006/0242709 Al 10/2006 Seinfeld et al. 2010/0077481 Al 3/2010 Polyakov et al.
2006/0251104 Al 11/2006 Koga 2010/0083376 Al 4/2010 Pere!raet al.
2006/0288417 Al 12/2006 Bookbinder et al. 2010/0115621 Al 5/2010 Staniford et al.
2007/0006288 Al 1/2007 Mayfield et al. 2010/0132038 Al 52010 Zaitsev
2007/0006313 Al 1/2007 Porras et al. 2010/0154056 Al 6/2010 Smith et al.
2007/0011174 Al 1/2007 Takaragi et al. 2010/0192223 Al 7/2010 Ismael et al.
2007/0016951 Al 1/2007 Piccard et al. 2010/0251104 Al 9/2010 Massand
2007/0033645 Al 2/2007 Jones 2010/0281102 A1 11/2010 Chinta et al.
2007/0038943 Al 2/2007 FitzGerald et al. 2010/0281541 Al 11/2010 Stolfo et al.
2007/0064689 Al 3/2007 Shin et al. 2010/0281542 A1 11/2010 Stolfo et al.
2007/0094730 Al 4/2007 Bhikkaji et al. 2010/0287260 Al 112010 Peterson et al.
2007/0143827 Al 6/2007 Nicodemus et al. 2011/0025504 Al 2/2011 Lyon etal.
2007/0156895 Al 7/2007 Vuong 2011/0041179 Al 2/2011 Stahlberg
2007/0157180 Al 7/2007 Tillmann et al. 2011/0047594 Al 2/2011 Mahaffey et al.
2007/0157306 Al 7/2007 Elrod et al. 2011/0047620 Al 2/2011 Mahaffey et al.
2007/0171824 Al 7/2007 Ruello et al. 2011/0078794 Al 3/2011 Manni et al.
2007/0174915 Al 7/2007 Gribble et al. 2011/0093951 Al 42011 Aziz
2007/0192500 Al 8/2007 Lum 2011/0099633 Al 4/2011 Aziz
2007/0192858 Al 8/2007 Lum 2011/0113231 Al 5/2011 Kaminsky
2007/0192863 Al 8/2007 Kapoor et al. 2011/0145920 Al 6/2011 Mahaffey et al.
2007/0198275 Al 8/2007 Malden et al. 2011/0167494 Al 7/2011 Bowen et al.
2007/0240218 Al 10/2007 Tuvell et al. 2011/0219450 Al 9/2011 McDougal et al.
2007/0240219 Al 10/2007 Tuvell et al. 2011/0247072 Al 10/2011 Staniford et al.
2007/0240220 Al 10/2007 Tuvell et al. 2011/0265182 A1 10/2011 Peinado et al.
2007/0240222 Al 10/2007 Tuvell et al. 2011/0307954 A1 12/2011 Melnik et al.
2007/0250930 Al 10/2007 Aziz et al. 2011/0307955 Al 12/2011 Kaplan et al.
2007/0271446 Al 11/2007 Nakamura 2011/0307956 A1 12/2011 Yermakov et al.
2008/0005782 Al 1/2008 Aziz 2011/0314546 A1 12/2011 Azizetal.
2008/0046781 Al* 2/2008 Childsetal. .oocoomrreenn..... 714/15 2012/0079596 Al 3/2012 Thomas et al.
2008/0072326 Al 3/2008 Danford et al. 2012/0084859 Al 4/2012 Radinsky et al.
2008/0077793 Al 3/2008 Tan et al. 2012/0117652 Al 5/2012 Ma_nnletal.
2008/0080518 Al 4/2008 Hoeflin et al. 2012/0174186 Al 7/2012 Aziz et al.
2008/0086720 Al* 4/2008 Lekel .oocovvovevereeeerenen.. 717/124 2012/0174218 Al 7/2012 McCoy et al.
2008/0098476 Al 4/2008 Syversen 2012/0198279 Al 8/2012 Schroeder
2008/0120722 Al 5/2008 Sima et al. 2012/0210423 Al 8/2012 Frie(_irichs et al.
2008/0134178 Al 6/2008 Fitzgerald et al. 2012/0222121 Al 8/2012 Staniford et al.
2008/0134334 Al 6/2008 Kim et al. 2012/0255017 Al1* 10/2012 Sallamcc.cccoevvvvnnenn. 726/24
2008/0141376 Al 6/2008 Clausen et al. 2012/0278886 Al 11/2012 Luna
2008/0184373 Al 7/2008 Traut et al. 2012/0297489 Al 112012 Dequevy
2008/0189787 Al 82008 Arnold et al. 2012/0330801 Al 12/2012 McDougal et al.
2008/0215742 Al 9/2008 Goldszmidt et al. 2013/0036472 Al 2/2013 Aziz
2008/0222729 Al 9/2008 Chen et al. 2013/0047257 Al 2/2013 Aziz
2008/0263665 Al 10/2008 Ma et al. 2013/0097706 Al 4/2013 Titonis et al.
2008/0295172 Al 11/2008 Bohacek 2013/0111587 Al 5/2013 Goel et al.
2008/0301810 Al 12/2008 Lehane et al. 2013/0160130 Al 6/2013 Mendelev et al.
2008/0307524 Al 12/2008 Singh et al. 2013/0160131 Al 6/2013 Madou et al.
2008/0320594 Al 12/2008 Jiang 2013/0227691 Al 8/2013 Aziz etal.
2009/0007100 Al 1/2009 Field et al. 2013/0246370 Al 9/2013 Bartram et al.

US 9,251,343 B1
Page 4

(56) References Cited
U.S. PATENT DOCUMENTS
2013/0263260 Al

2013/0291109 Al
2013/0298243 Al

10/2013 Mahaffey et al.

10/2013 Staniford et al.

11/2013 Kumar et al.

2014/0053260 Al 2/2014 Gupta et al.

2014/0053261 Al 2/2014 Gupta et al.

2014/0351935 Al* 11/2014 Shaoetal.c.cccovenne... 726/23

FOREIGN PATENT DOCUMENTS

WO WO-02/23805 3/2002

WO WO0-2007-117636 10/2007

WO WO-2008/041950 4/2008

WO WO-2011/084431 7/2011

WO WO0-2012145066 10/2012
OTHER PUBLICATIONS

Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol,
Springer-Velag, France., (2006), pp. 67-77.

Chaudet, C. , et al., “Optimal Positioning of Active and Passive
Monitoring Devices”, International Conference on Emerging Net-
working Experiments and Technologies, Proceedings of the 2005
ACM Conference on Emerging Network Experiment and Technology,
CoNEXT 085, Toulousse, France, (Oct. 2005), pp. 71-82.

Kiristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Tech-
niques”, NU Security Day, (2005), 23 pages.

Moore, D., et al., “Internet Quarantine: Requirements for Containing
Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003),
pp. 1901-1910.

Morales, Jose A., et al., ““Analyzing and exploiting network behav-
iors of malware.””, Security and Privacy in Communication Net-
works. Springer Berlin Heidelberg, 2010. 20-34.

Williamson, Matthew M., “Throttling Viruses: Restricting Propaga-
tion to Defeat Malicious Mobile Code”, ACSAC Conference, Las
Vegas, NV, USA, (Dec. 2002), pp. 1-9.

IEEE Xplore Digital Library Sear Results for “detection of unknown
computer worms”, Hittp://ieeexolore.ieee.org/searchresult.
jsp?SortField=Score&SortOrder=desc&ResultC . . ., (Accessed on
Aug. 28, 2009).

AltaVista Advanced Search Results. “Event Orchestrator”, Http://
www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa.
Event+Orchesrator . . ., (Accessed on Sep. 3, 2009).

AltaVista Advanced Search Results. “attack vector identifier”, Http://
www.altavista.com/web/results?Itag=odv&pg=aq
&agqmode=aqa=Event+Orchestrater . . . , (Accessed on Sep. 15,
2009).

Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN)
(“Cisco”), (1999-2003).

Reiner Sailer, Enriciuillo Valdez, Trent Jaeger, Roonald Perez,
Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype:
Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2,
2005) (“Sailer”).

Excerpt regarding First Printing Date for Merike Kaeo, Designing
Network Security (“Kaeo”), (2005).

The Sniffers’s Guide to Raw Traffic available at: yuba.stanford.
edu/~casado/pcap/sectionl.html. (Jan. 6, 2014).

“Network Security: NetDetector—Network Intrusion Forensic Sys-
tem (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar.
2002), 1 page.

“When Virtual is Better Than Real”, IEEEXplore Digital Library,
available at, http://ieeexplore.icee.org/xpl/articleDetails.
jsp?reload=true&arnumber=990073, (Dec. 7, 2013).

Abdullah, et al., Visualizing Network Data for Intrusion Detection,
2005 IEEE Workshop on Information Assurance and Security, pp.
100-108.

Adetoye, Adedayo, et al., “Network Intrusion Detection & Response
System”, (“Adetoye”), (Sep. 2003).

Aura, Tuomas, “Scanning electronic documents for personally iden-
tifiable information”, Proceedings of the 5th ACM workshop on
Privacy in electronic society. ACM, 2006.

Baecher, “The Nepenthes Platform: An Efficient Approach to collect
Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Bayer, etal., “Dynamic Analysis of Malicious Code”, J Comput Virol,
Springer-Verlag, France., (2006), pp. 67-77.

Boubalos, Chris , “extracting syslog data out of raw pcap dumps,
seclists.org, Honeypots mailing list archives”, available at http://
seclists.org/honeypots/2003/g2/319(*“Boubalos™) Jun. 5, 2003.
Chaudet, C., et al., “Optimal Positioning of Active and Passive Moni-
toring Devices”, International Conference on Emerging Networking
Experiments Technologies, Proceedings of the 2005 ACM Confer-
ence on Emerging Network Experiment and Technology, CONEXT
’05, Toulousse, France, (Oct. 2005), pp. 71-82.

Cohen, M.1. , “PyFlag—An advanced network forensic framework”,
Digital Investigation 5, Elsevier, (2008), pp. S112-S120.

Costa, M., et al., “Vigilante: End-to-End Containment of Internet
Worms”, SOSP 05, Association for Computing Machinery, Inc.,
Brighton UK., (Oct. 23-26, 2005).

Crandall, JR. , et al., “Minos: Control Data Attack Prevention
Orthogonal to Memory Model”, 37th International Symposium on
Microarchitecture, Portland, Oregon, (Dec. 2004).

Deutsch, P., “Zlib compressed data format specification version 3.3”
RFC 1950, (1996).

Distler, “Malware Analysis: An Introduction”, SANS Institute
InfoSec Reading Room, SANS Institute, (2007).

Dunlap, George W., et al., “ReVirt: Enabling Intrusion Analysis
through Virtual-Machine Logging and Replay”, Proceeding of the
5th Symposium on Operating Systems Design and Implementation,
USENIX Association, (“Dunlap”), (Dec. 9, 2002).

Filiol, Eric, et al., “Combinatorial Optimisation of Worm Propaga-
tion on an Unknown Network”, International Journal of Computer
Science 2.2 (2007).

Goel, et al., Reconstructing System State for Intrusion Analysis, Apr.
2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Hjelmvik, Erik , “Passive Network Security Analysis with
NetworkMiner”, (IN)SECURE. Issue 18, (Oct. 2008), pp. 1-100.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov.
2003).

Kim, H., et al., “Autograph: Toward Automated, Distributed Worm
Signature Detection”, Proceedings of the 13th Usenix Security Sym-
posium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual
Machines”, (“King”).

Krasnyansky, Max , et al., Universal TUN/TAP driver, available at
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
(2002) (“Krasnyansky™).

Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Sig-
natures Using Honeypots”, 2nd Workshop on Hot Topics in Networks
(HotNets-11), Boston, USA, (2003).

Kiristoff, J., “Botnets, Detection and Mitigation: DNS-Based Tech-
niques”, NU Security Day, (2005), 23 pages.

Liljenstam, Michael et al., “Simulating Realistic Network Traffic for
Worm Warning System Design and Testing”, Institute for Security
Technology studies, Dartmouth College, (“Liljenstam”), (Oct. 27,
2003).

Marchette, David J., “Computer Intrusion Detection and Network
Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Margolis, PE. , “Random House Webster’s ‘Computer & Internet
Dictionary 3rd Edition””, Isbn 0375703519, (Dec. 1998).

Moore, D., et al., “Internet Quarantine: Requirements for Containing
Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003),
pp. 1901-1910.

Morales, Jose A, et al., “Analyzing and exploiting network behaviors
of malware.”, Security and Privacy in Communication Networks,
Springer Berlin Heidelberg, 2010, 20-34.

Natvig, Kurt , “Sandboxii: Internet”, Virus Bulletin Conference,
(“Natvig”), (Sep. 2002).

NetBIOS Working Group. Protocol Standard for a NetBIOS Service
on a TCP/UDP transport: Concepts and Methods. STD 19, RFC
1001, Mar. 1987.

US 9,251,343 B1
Page 5

(56) References Cited
OTHER PUBLICATIONS

Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detec-
tion, Analysis, and Signature Generation of Exploits on Commodity
Software”, In Proceedings of the 12th Annual Network and Distrib-
uted System Security, Symposium (NDSS ’05), (Feb. 2005).
Newsome, et al., “Polygraph: Automatically Generating Signatures
for Polymorphic Worms”, In Proceedings of the IEEE Symposium on
Security and Privacy, (May 2005).

Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale
Attack Mitigation”, DARPA Information Survivability Conference
and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.

Peter M. Chen, and Brian D. Noble , “When Virtual Is Better Than
Real, Department of Electrical Engineering and Computer Science”,
University of Michigan (“Chen”).

Silicon Defense, “Worm Containment in the Internal Network”,
(Mar. 2003), pp. 1-25.

Singh, S., et al., “Automated Worm Fingerprinting”, Proceedings of
the ACM/USENIX Symposium on Operating System Design and
Implementation, San Francisco, California, (Dec. 2004).

Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep.
17, 2002).

Thomas H. Ptacek, and Timothy N. Newsham, “Insertion, Evasion,
and Denial of Service: Fluding Network Intrusion Detection”, Secure
Networks, (“Ptacek™), (Jan. 1998).

Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld
Issue27, (“Venezia”), (Jul. 14, 2003).

Whyte, et al., “DNS-Based Detection of Scanning Works in an Enter-
prise Network”, Proceedings of the 12th Annual Network and Dis-
tributed System Security Symposium, (Feb. 2005), 15 pages.

* cited by examiner

US 9,251,343 B1

Sheet 1 of 9

Feb. 2, 2016

U.S. Patent

v Joud
I 'Ol
| QJ0100g |
Luogmey | ¥8A | ouommed [waA Han
N:p Obl 801 & 901 Ol

veol
N

dcol

00l

US 9,251,343 B1

Sheet 2 of 9

Feb. 2, 2016

U.S. Patent

¢ Ol

TTc WaisAs Sunesadp

TiC
PHLE!
|gelooq

k¥4 __
ysiq feruip . OEC WA

Bee Wolshg
Bunesad 1seng

8¢cC
ALLQUALLT LIOQNRZURNLIA
9¢¢ 2107 uoI1RIBURL) WY

¥z 21807 uosuedwo) yseH

0¢C¢ 21807 uonesauan Ysey “

BT 01607 uonoex3 HaW 7

TT 1019319 13009

T¢ 28eJ01S JUBlsISiad

H § H
| 90BJI3U| UOIIEIIUNWILIO) |

70¢C Jossaa0.4

9
[
o~

00¢ Wa1sAS uo1310339Q W¥1009

US 9,251,343 B1

Sheet 3 of 9

Feb. 2, 2016

U.S. Patent

<o
N
o

JUSWIUOIIAUTY [BNUIA 1980y

S3A

ON

8ce

alemely se a|dwes Ajsse|n

et U107 1009 JO (gH mau) Joysdeus YseH 21e1ouss)
gIe MSIQ [eNUIA WOl (8)101088 plodoy joog pesy
S3A
9it
ON ¢
paysiuly
UonnNoax3 seH

2%

HEeA
30¢ JuUswiuoIIAUT [enUIA Ul 9jdwes 81ndax3 pue peoT ‘ulelqo
¥0E WwLsu0n joog Jo (LH) UseH suleseq sjeleuss)
20¢E

YSIQ [ENUIA WO (S)I0}08S PI00aY 100g peay

US 9,251,343 B1

Sheet 4 of 9

Feb. 2, 2016

U.S. Patent

¥ 'Old
—_— (7% (374 7% 1772 474 90v
i $9|14 JUBUOYD (s)a114 piooay Wwoshs =] 8oIne(Q
100d WA sSnoIe Bo usng 009 Bunessdo PISIA WA abelo)s
1
{742 {5152 147 _
Ja|npayog souesy| ‘S0 lojelouss) ysey i}4
— (WA "6°9)
i257 cer acy I8|[o1u0)
Jojelouss) us|y 6o juea3 8|Npoly sisAleuy
00¥
waisAg
7oV 3% moﬁc_ uonoda)e(Q
asuIyoR |BNMIA sl
SInpoyy Butonuopy walsAg Bunesadp snolep
— ZIT p1025Y 100
TR Ly P ¥ 1o0gd 7
ojdweg jusjuo9 80P AsIA [BNMIA

US 9,251,343 B1

Sheet 5 of 9

Feb. 2, 2016

G 'Old
\ 005
Aowp)
GES Aowam s o2 e e
aoneg so1A8q 891Aeq o1neg
ofeio)g |esoydusd indino indy,
il ; ; f '
o] Ll 015 edeue| o/l
SORLSIU| JHOMISN
0ET walshs
JaIndwio) JaAIas 21g ebriols Juesisiog
\
205
jusbyyoiio
uonaele(Ibpoog
. §0S p10oy 1009
05 80G Jossaooid
wejsAg Bunesedp
7] -
waysAs Jindwo) |
Z0S Wa)sAg Jandwo? 3soH

U.S. Patent

US 9,251,343 B1

Sheet 6 of 9

Feb. 2, 2016

U.S. Patent

] 15
9 'Old Haly onss|

009
//V JusIapId ON
809
yseH aueseg yum jouysdeus yseH pue siedwon

909 (Juejuo) J00g)

yseH joysdeus Jualng 9I0)S PUE ‘9)eIsuss) ‘pesy
¥09 (PUBWISE-UQ 10 BINPaYDS Jod “B8) 1s8] 19BBI |
209 (1usyu0s j009)

USBH dulloseg 901G PUE SJeISUDD) ‘pesy

US 9,251,343 B1

Sheet 7 of 9

Feb. 2, 2016

U.S. Patent

JARO k|

0¢L
walsAg
a8elo01s

JU31SISJad

0L
walsAg

09,
(Jo1wisueL SvBHS
SEIENLSSENVBs INTETT 1S
Ae|dsip “8'8) s9o1n8Q 1nd1nQ
o
(49A13004 SSO|UIM ‘USJISYINO] S7A
‘asnow ‘paeogAay “8:9) 20e4191u] O/
sa2IAR(Q Induj.-
PO e //.,
%« /" i
|] ovL
| UL s 30B4493U|
L HOMISN | 0 mM JomiaN
™ ! “wwo)

Aowa

0TL
105532044

TeL

00Z
J9||0J3u0)

US 9,251,343 B1

Sheet 8 of 9

Feb. 2, 2016

U.S. Patent

ks 768 768
JuawabeuRp SAasn SAo

068
yJomeN

0S8
waIsAg uonmsI_aQg TS
JUSUOD SNoIEN 1004
%88 288 aulyoe
SINPOR suibug
Bunioday sIsAleuy
|
298 098 —
aseqgele i SINPO |-mms Lm_:ﬂmwsow
soNSIINBH ansunay
ov8
de| yJomiaN /
(3 5z8 0c8 o8
ao1A8(. }lomiaN 201A2(
WOND | gog | IBMOI NS
8 'OlId

008

US 9,251,343 B1

Sheet 9 of 9

Feb. 2, 2016

U.S. Patent

6 'Ol

3 1daouay) -

v
V4

966
pJod3y 1009

666 991050 <.

-

a8eJ01s 3|qel00g

886 ©3e101S Jua3sisiad

| \...,
P
\\k.\.\, ,\wﬁ«
\,,\ e av66
& g e .. suonesado
g 1da2433u e ¥ |7 swnjop pue
e -~
o D3dooss) 7 s|ed |V [3uJsy
Te6 | =
Aupn Pt
AGERIENV] TEE
21807 sa01Al8S
\.\Q
066 986 douelsu|
21807, walsAs Suizesadp
mccotmo_\/_
v 1dasusiu . VPB6
e
o (18D 14V

786
3oueisu| wesgoud

086 1UBWUOIIAUT
uoIINIaX3

S|dwes

US 9,251,343 B1

1
DETECTING BOOTKITS RESIDENT ON
COMPROMISED COMPUTERS

BACKGROUND

1. Field of the Invention

The invention relates generally to computer security and
more particularly to detecting malicious software operating
in computers and other digital devices.

2. Related Art

Malicious software, or malware for short, may include any
program or file that is harmful by design to a computer.
Malware includes computer viruses, worms, Trojan horses,
adware, spyware, and any programming that gathers infor-
mation about a computer or its user or otherwise operates
without permission. Owners of the computers are often
unaware that these programs have been added to their com-
puters and are often similarly unaware of their function.

Malicious network content is a type of malware distributed
over a network via websites, e.g., servers operating on a
network according to Hypertext Transfer Protocol (“HTTP”)
or other well-known standard. Malicious network content
distributed in this manner may be actively downloaded and
installed on a computer, without the approval or knowledge of
its user, simply by the computer accessing the website hosting
the malicious network content (the “malicious website”).
Malicious network content may be embedded within objects
associated with web pages hosted by the malicious website.
Malicious network content may also enter a computer on
receipt or opening of email. For example, email may contain
an attachment, such as a PDF document, with embedded
malicious executable programs. Furthermore, malicious con-
tent may exist in files contained in a computer memory or
storage device, having infected those files through any of a
variety of attack vectors.

Various processes and devices have been employed to pre-
vent the problems associated with malicious content. For
example, computers often run antivirus scanning software
that scans a particular computer for viruses and other forms of
malware. The scanning typically involves automatic detec-
tion of a match between content stored on the computer (or
attached media) and a library or database of signatures of
known malware. The scanning may be initiated manually or
based on a schedule specified by a user or system adminis-
trator associated with the particular computer. Unfortunately,
by the time malware is detected by the scanning software,
some damage on the computer or loss of privacy may have
already occurred, and the malware may have propagated from
the infected computer to other computers. Additionally, it
may take days or weeks for new signatures to be manually
created, the scanning signature library updated and received
for use by the scanning software, and the new signatures
employed in new scans.

Moreover, anti-virus scanning utilities may have limited
effectiveness to protect against all exploits by polymorphic
malware. Polymorphic malware has the capability to mutate
to defeat the signature match process while keeping its origi-
nal malicious capabilities intact. Signatures generated to
identify one form of a polymorphic virus may not match
against a mutated form. Thus polymorphic malware is often
referred to as a family of virus rather than a single virus, and
improved antivirus techniques to identify such malware fami-
lies is desirable.

Another type of malware detection solution employs vir-
tual environments to replay content within a sandbox estab-
lished by virtual machines (VMs) that simulates a target
operating environment. Such solutions monitor the behavior
of content during execution to detect anomalies and other
activity that may signal the presence of malware. One such
system sold by FireEye, Inc., the assignee of the present

10

15

20

25

30

35

40

45

50

55

60

65

2

patent application, employs a two-phase malware detection
approach to detect malware contained in network traffic
monitored in real-time. In a first or “static” phase, a heuristic
is applied to network traffic to identify and filter packets that
appear suspicious in that they exhibit characteristics associ-
ated with malware. In a second or “dynamic” phase, the
suspicious packets (and typically only the suspicious packets)
are replayed within one or more virtual machines. For
example, if a user is trying to download a file over a network,
the file is extracted from the network traffic and analyzed in
the virtual machine using an instance of a browser to load the
suspicious packets. The results of the analysis constitute
monitored behaviors of the suspicious packets, which may
indicate that the file should be classified as malicious. The
two-phase malware detection solution may detect numerous
types of malware, and even malware missed by other com-
mercially available approaches. The two-phase malware
detection solution may also achieve a significant reduction of
false positives relative to such other commercially available
approaches. Otherwise, dealing with a large number of false
positives in malware detection may needlessly slow or inter-
fere with download of network content or receipt of email, for
example. This two-phase approach has even proven success-
ful against many types of polymorphic malware and other
forms of advanced persistent threats.

In some instances, malware may take the form of a bootkit,
also known as a kernel rootkit. As used herein, the term
‘bootkit’ refers to malicious code that installs itself in a boot
record of the kernel of an operating system of a compromised
computer without the knowledge or authority of the infected
computer’s user. The infected boot record may be the master
boot record, partition boot record, boot loader, or volume boot
record. A bootkit may actively hide its presence from admin-
istrators by subverting standard operating system functional-
ity. Moreover, a bootkit is inherently hard to detect because it
may be executed before the operating system and may subvert
operating system functionality to hide its presence. For
example, bootkits may be able to hook and bypass operating
system routines, initialization (processor mode switch), and
security checks (integrity, code-signed, etc.). Bootkits may
create a hidden file system within the infected computer, in
which it can hide other malware and/or copies of infected
files.

Generally speaking, a bootkit functions at a fundamental
level of operation of a computer, associated with the kernel of
its operating system. Known operating systems communicate
with an external device such as a disk controller, peripheral
device and other hardware through the use of an electronic
signal called an interrupt. For example, when an application
sends a system call seeking to read or write to a hard disk, it
issues an interrupt. Then, an interrupt handler function of the
operating system normally handles and completes the inter-
rupt. A bootkit installed in the operating system may hook
(intercept) the interrupt and/or related kernel functions in
order to modify the way the interrupt is handled. The bootkit
may place an internal address in the system service descriptor
table (SSDT) of a Windows® operating system or the system
call table (SCT) of a Linux® operating system in order to
handle an interrupt itself instead of the original handler.
Indeed, a bootkit may modify data structures in a Windows’
kernel using a method known as direct kernel object modifi-
cation (DKOM). This can permit the bootkit to rewrite a
portion of code of the operating system, for example, when
the kernel loads to handle the interrupt. The rewritten code
may allow the bootkit to bypass or modify integrity testing
and other security protection mechanisms, and even bypass
advanced operating protection systems, such as patch guard,
and thereby remain concealed. Even full disk encryption is to
no avail in protecting a compromised computer since, even if

US 9,251,343 B1

3

all other data on a boot-up drive is encrypted, the boot
sequence located in the master boot record typically cannot
be encrypted.

It has been suggested that a defense against bootkit attacks
is the prevention of unauthorized physical access to the sys-
tem, but this is impractical in today’s networked world. More-
over, virus scanning and next generation firewall technology
have not prevented advanced forms of bootkits from gaining
access to operating system kernels. Recently, operating sys-
tems themselves have incorporated counter-measures to
thwart the threat of bootkits. For example, 64-bit versions of
Microsoft Windows implement mandatory signing of all ker-
nel-level drivers in order to make it more difficult for
untrusted code to execute with the highest privileges in a
computer, and implement kernel patch protection. However,
bootkits are also rapidly evolving to circumvent such counter-
measures.

Further enhancement to malware detection effectiveness is
desirable of course, particularly as malware developers con-
tinue to create new forms of exploits, including more sophis-
ticated bootkits, which can have potentially serious impact on
computer and network infrastructure.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more fully understood with reference
to the following detailed description in conjunction with the
drawings, of which:

FIG. 1 is a block diagram of a bootable disk drive with a
boot record in a format illustrative of the prior art.

FIG. 2 is a block diagram of a bootkit detection system, in
accordance with an illustrative embodiment of the invention
employing a virtual environment;

FIG. 3 is a flow chart of a bootkit detection method using a
virtual environment, in accordance with an illustrative
embodiment of the invention, which may be practiced by the
system of FIG. 2;

FIG. 4 is a block diagram of a malicious content detection
system, in accordance with an illustrative embodiment of the
invention employing a virtual environment, which may detect
malware including bootkits;

FIG. 5 is a block diagram of a bootkit detection agent
incorporated into an endpoint of a networked computer sys-
tem, in accordance with an alternative embodiment of the
invention;

FIG. 6 is a flow chart of a bootkit detection method, in
accordance with an illustrative embodiment of the invention,
which may be practiced by the system of FIG. 5;

FIG. 7 is a block diagram of a controller for implementing
a backdoor detection system in accordance with an illustra-
tive embodiment of the invention;

FIG. 8 is a block diagram of a computer network system
deploying a malicious content detection system in accor-
dance with an illustrative embodiment of the invention; and

FIG. 9 is a block diagram of a bootkit detection system,
configured for processing samples within a virtual environ-
ment, in accordance with an alternative, illustrative embodi-
ment of the invention.

DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Introduction

Generally speaking, a bootkit is a type of (or part of) an
active infiltration attack, often operating in a two-step pro-
cess. The first step is infection, which may take the form of a
typically small package of malicious code (malware) being

10

15

20

25

30

35

40

45

50

55

60

65

4

injected into a computer, whose function is to compromise the
infected device. The second step involves the resident bootkit
performing malicious activity. Embodiments of the invention
are designed to detect certain types of malicious activity of
bootkits. As used herein a “computer” is any electronic device
having a processor for running an operating system, which
may include, without limitation, notebook computers, desk-
top computers, tablets, smart phones and other smart devices
and equipment, and often employs a network interface for
communication over a network, such as, for example, the
Internet. The terms “computer” and “computer systems” may
be construed as synonymous as used throughout this specifi-
cation, unless context demands otherwise.

Embodiments of the invention detect bootkits resident on a
computer by detecting a change or attempted change to con-
tents of boot locations of persistent storage, where any
detected change or attempted change represents evidence of a
resident bootkit and in response, an alert regarding the evi-
dence of a resident bootkit may be issued. Some embodi-
ments may monitor computer operations seeking to change
the content of boot locations of persistent storage, where the
monitored operations may include API calls performing, for
example, WRITE, READ or APPEND operations with
respect to the contents of the boot locations. Other embodi-
ments may generate a baseline hash of the contents ofthe boot
locations at a first point of time and a hash snapshot of the boot
locations at a second point of time, and compare the baseline
hash and hash snapshot where any difference between the two
hash values constitutes evidence of a resident bootkit. Yet
other embodiments may perform bootkit detection using both
techniques to better assure detection of bootkits.

As used herein, boot locations are areas (e.g., addressable
locations) of persistent storage that store contents (including
executable code and data) required to load an operating sys-
tem for execution in any execution environment, including a
virtual execution environment as provided by a virtual
machine. These shall sometimes be referred to as the “boot
locations” and the “boot content.” The boot locations may
store the master boot record. In some embodiments, the boot
locations may store a master boot record (“MBR”) and one or
more volume boot records (“VBRs”). Some embodiments
monitor any changes or attempted changes to only the boot
locations containing the MBR, and others monitor any
changes or attempted changes to both the MBR and one or
more of the VBR.

Embodiments of the invention may perform an integrity
check of boot content to detect bootkit activity. An integrity
checker initially generates and stores, preferably in persistent
storage, a baseline hash of the record. Thereafter, the integrity
checker generates one or more additional hashes of the MBR
taken over time. The hash baseline is used as a basis or
standard for comparison with each subsequent hash instance,
called the hash snapshot. Where plural snapshots are taken,
they may be generated on a periodic or aperiodic basis. The
integrity checker compares the hash baseline with each hash
snapshot. The boot content is not expected to change during
normal operation of a computer. Any detected difference in
the hash values is indicative of abnormal activity and thus of
a resident bootkit. The reason this inference can be made is
that few legitimate applications change the boot content.
Moreover, these applications are not typically used by ordi-
nary users found in a commercial environment. On the other
hand, malicious bootkits frequently make changes to the boot
content. Accordingly, the integrity checker may generate a
bootkit alert if any difference is detected, and may report the
details of the malware attack to an administrator or user.

US 9,251,343 B1

5

The proposed techniques may be implemented to detect
bootkits in computers in use, for example, within enterprises,
by performing the methods described herein (or select steps
thereof), for example, as background processes during nor-
mal computer operation as part of an on-going malware
detection/protection program. Where only select steps are
performed during normal operation of the computers, the
remaining steps may be performed by a security station,
which may issue an alert to IT or security personnel. Accord-
ingly, the proposed techniques may be implemented in net-
work endpoints and standalone computers, for example, by
incorporation of bootkit detection agents into their respective
operating systems or into utilities or other computer programs
installed thereon.

In alternative embodiments, the proposed techniques may
be implemented in a bootkit detection appliance or malware
detection system, which may detect changes or attempted
changes caused by samples (e.g., files or network content, for
example) that may be malicious and contain bootkit code.
They may also be implemented in the two-phase malware
detection solutions, as described above, or in other malware
detection systems, with or without virtual execution environ-
ments. As such, the invention may be deployed to protect
computer systems in an enterprise environment or to test
known or unknown samples in diagnostic or forensic labs.

For a computer running a virtual machine, embodiments
may implement the invention partially within a guest image
under the control of a hypervisor or VMM, and partially
within the virtual machine itself. Additionally, embodiments
may implement the invention partially within the virtual
machine and its guest image, and partially within an external
security station or malware detection system.

Bootkit Detection System Architecture and Operation

FIG. 1 depicts a bootable, partitioned hard disk drive 100,
in which is stored a master record 102A. The master record
102A is shown in an expanded view at 102B, illustrating
principles of a prior art approach to bootable disk formatting.
In the illustrated example, the MBR is the first sector 104,
which may hold boot code and a partition table for locating
the other fields of the master record within logical partitions;
a volume boot record (VBR) as the second sector 106, which
may hold a disk parameter block and volume boot code and
precedes a partition in the boot record; a partition 0 for storing
data and computer instructions as a third sector 108; another
VBR as a fourth sector 110; and another partition 1, again for
storing data and computer instructions as a fifth sector 112.
Unlike the plural VBRs 106, 110 contained in the illustrated
master record 102A, there is only one MBR 104 on the
bootable drive 100, and this is typical for any known bootable
mass storage device, whether a fixed disk or removable drive,
for the major operating systems, such as Windows®, UNIX,
and LINUX, to name a few.

As noted, in order to be readily locatable, the MBR is
always the first sector of the drive, though the precise format
and structure of the boot record depends on the operating
system type and version. Sometimes the term MBR is used to
describe the first sector of a bootable disk, and, at other times,
it refers to the boot content contained therein, and sometimes
it is referred to as the master boot block or master partition
boot sector. Normally, IBM Personal Computers use 512-
byte sectors, real or emulated, and the MBR is thus up to 512
bytes in length.

Where an operating system is to be loaded within a virtual
machine, a virtual bootable disk or other persistent storage is
typically used rather than a physical disk. Nonetheless, the
principles just discussed apply: the MBR may be located
within sector 0 of the virtual disk, and, upon the disk being

10

15

20

25

30

35

40

45

50

55

60

65

6

mounted, sector 0 of the virtual bootable disk can be read, its
partition table accessed to identify, for example, the locations
of the VBRs, and its boot code executed. The same is true of
flash drives, which typically have analogous formats to typi-
cal SCSI disk drives, and thus its MBR and partition table
may be found in its sector 0.

During operation, after a computer is powered on, its basic
input/output system (BIOS) typically performs a power-on
self test (POST) and initializes the system. Next, the BIOS
copies the first sector of a bootable drive containing the MBR
into memory and passes control of the computer to the boot
code (executable instructions) contained therein. Execution
of the boot code accesses the partition table, which tells the
computer how the hard drive is partitioned, and how to load
the operating system. In other words, the boot code uses the
partition table to identify a configured bootable partition on
the drive, which permits the system to load and execute its
VBRs.

FIG. 2 depicts an illustrative architecture of a bootkit detec-
tion system 200, which is designed to detect bootkits installed
onacompromised computer. The system 200 may even detect
‘zero day’ malware attacks. The term “zero day” is used to
denote malware that has not been previously encountered and
are previously unknown. The bootkit detection system 200
has one or more processors 202 that are coupled to commu-
nication interface logic 204 via a first transmission medium
206. Communication interface logic 204 enables the bootkit
detection system 200 to monitor network traffic, for example,
over a communication link, such as network 212, 214, 216 of
FIG. 2A. Communication interface logic 210 may also permit
communications from the bootkit detection system 200
directly or indirectly over a communication link, such as a
private and/or public network, with other electronic devices.
According to one embodiment, communication interface
logic 204 may be implemented as a physical interface includ-
ing one or more ports for wired connectors. Additionally, orin
the alternative, communication interface logic 204 may be
implemented with one or more radio units for supporting
wireless communications with other electronic devices overa
wireless network.

Processor 202 is coupled via transmission medium 208 to
a persistent storage 210. Persistent storage 210 includes a
bootable disk 211, which permits processor 202 to boot up, as
described above. Persistent storage 210 also includes an oper-
ating system 212 and a bootkit detector 212, both of which
may take the form of executable computer program code. The
processor 202 may execute the operating system 212 natively,
and the bootkit detector 214 may run as an application over
the operating system 212. For purposes of the following dis-
cussion, we will refer to the MBR as an illustrative example of
the boot content, though this should not be construed as
limiting the boot content to only the MBR unless otherwise
indicated. The bootkit detector 212 may include an MBR
extraction logic 218, which is configured to access the master
record from a bootable disk (e.g., a virtual disk) to extract the
MBR therefrom (and possibly other sectors, depending on the
embodiment, though the embodiment will be discussed in
terms of the MBR); a generation logic 220, which is config-
ured to generate an MBR-based hash signature and store it in
a hash log or database 222; a hash comparison logic 224,
which is configured to compare a first or baseline hash sig-
nature with a second or snapshot hash signature; and an alert
logic 226, which is configured to issue an alert if the com-
parison logic 224 determines that the MBR has been changed
in that it finds a difference between the hash values of the
baseline and snapshot signatures. In some embodiments, the
bootkit detector 214 may execute potentially malicious

US 9,251,343 B1

7

samples within a virtualization environment 228 having a
guest operating system 229, and possibly a computer appli-
cation, such as, for example, a browser or email application
(not shown), running within a virtual machine 230. During
execution, the processor 202 may execute an operating sys-
tem instance 229 within an instance of the virtual machine
228, which runs over the operating system 212.

FIG. 3 depicts a method 300 for detecting malicious boot-
kits using logic such as, for example, the bootkit detector 212
of FIG. 2, in accordance with an embodiment of the invention.
The method 300 starts, in step 302, where logic reads one or
more boot record sectors from a bootable disk. In accordance
with a preferred implementation, the one or more boot record
sectors contain the MBR and possibly, depending on the
embodiment, other information. In step 304, logic generates a
baseline hash (H1) at a point of time (t,) of the boot content in
step 302. In this illustrative case, where the MBR is the boot
content, the baseline hash is generated from only the MBR.
The baseline hash may be calculated using any a variety of
well-known hashing algorithms, such as, for example, MDS5.
The baseline hash serves as a signature of the MBR as of a
time preferably before the virtual disk containing the MBR
may have been exposed to any malicious bootkit. The base-
line hash is calculated and stored, for example, during instal-
lation of the guest operating system 229 of FIG. 2, and again
immediately following each update thereof, including, with-
out limitation, each new versions and service pack. Each new
baseline hash may be stored in a tamper-protected manner as
a “golden image,” for example, in persistent storage within
the detection system 200 of FIG. 2.

In step 308, logic obtains, loads, and executes a sample
within a virtual environment to be tested to determine
whether the sample contains a malicious bootkit. Where the
sample is executable code it may be run as a computer pro-
gram or application over the guest image of the operating
system in the virtual environment. Where the sample consti-
tutes an object (such as a PDF document), which is itself not
executable even though it may contain embedded
executables, the sample may be loaded by a suitable computer
program or application (such as, in this example, a PDF
reader) running over the guest operating system and together
constituting a guest image executed by a virtual machine.

Next, in step 316, logic determines whether execution of
the sample has finished. If it has not, then, in step 314, method
300 waits a predetermined or dynamically set period of time
(where dynamically set, e.g., based on experience in execut-
ing such samples within the guest image), before repeating
step 316. When the logic of step 316 determines that execu-
tion has finished, in step 318, logic reads one on more boot
record sectors from the bootable disk, and, for example, the
same MBR-containing sector(s) as read to generate the base-
line hash signature (H2). In step 322, logic generates a hash
snapshot based on the read boot content, in this example, the
MBR, at a point of time (t,), which together with baseline
signature H1, will serve as a basis for comparison of the MBR
over time (t; to t,). In some embodiments, snapshot hashes
may be taken from time to time during the execution of the
sample. In step 324, logic determines whether the baseline
hash signature is the same as the snapshot hash signature. It
may perform this comparison simply by subtracting one hash
value from the other. If the difference is any value other than
zero, then H1 is not equal to H2. This result would indicate
that the MBR has been changed at some point in time between
the generation of the baseline hash and the snapshot hash (that
is, between t; and t,). This, in turn, would indicate that a
mechanism must have caused that change in the MBR, and
that mechanism may very well be a bootkit. If the baseline

10

15

20

25

30

35

40

45

50

55

60

65

8

hash is equal to the snapshot hash, in step 326, logic may be
employed to reset the virtual environment to ready it for a next
sample to be tested. As such, the method 300 may return to
step 308. On the other hand, if the baseline hash is not equal
to the snapshot hash, in step 328, logic classifies the sample as
malicious, that is to say, as likely (that is, having a high
probability of) containing a bootkit.

FIG. 4 is a block diagram illustrating a malicious content
detection system according to one embodiment of the inven-
tion, which may implement the method 300 of FIG. 3, for
example. Referring to FIG. 4, system 400 includes a control-
ler 402 to manage or control one or more virtual machines
(VMs) 404 (also referred to as a sandboxed operating envi-
ronment or simply a sandbox), where content (in this case,
computer instructions and data) associated with VMs 404 are
stored in storage device 406 in a form of VM disk files 442.

Controller 402 may be implemented as part of a VM moni-
tor or manager (VMM), also referred to as a hypervisor for
managing or monitoring VMs. The controller 402 may
execute an operating system instance 433 of host operating
system (OS) 444, which is stored in storage device 406. VM
404 may host a guest OS, depicted as operating system
instance 410, which is different from the host OS 433 of the
controller 402. The host OS 433 and the guest OS 410 may be
the same type of operating systems or different types of
operating systems (e.g., Windows™, Linux™, Unix™, Mac
OS™_ jOS™ etc.) or different versions thereof. A VM is a
simulation of a computer (abstract or real) that is usually
different from the target computer (where it is being simu-
lated on). Virtual machines may be based on specifications of
a hypothetical computer or emulate a computer architecture
and functions of a real world computer. A virtual machine
referred to herein can be any type of virtual machines, such as,
for example, hardware emulation, full virtualization, para-
virtualization, and operating system-level virtualization vir-
tual machines.

On initial execution of the virtual machine 404, a processor
or processors (not shown in this figure) of the controller 402
accesses a virtual disk 408 provided by the virtual machine
404 to obtain one or more sectors of a boot record 412,
preferably the sector(s) containing the boot content, as stored
thereon. It should be noted that boot record 412 is isolated
from the boot record 446 associated with operating system
444. A hash generator 426 included in the controller 402,
generates a hash of boot content obtained by the controller
402 from the virtual disk 408, and, for example, a hash of the
MBR. That hash is the baseline hash serving as the baseline
signature of the MBR for later testing of content samples,
including the content sample 414, by the malicious content
detection system 400. The baseline hash signature may be
stored in the event log 432. In some embodiments, the base-
line hash signature may be stored as a heavily obfuscated
value under kernel software protection.

According to one embodiment, when a content sample 406
to be tested as to whether it may contain a bootkit is received
for a dynamic content analysis (as opposed to be a static
content analysis described below), a scheduler 424 of con-
troller 402 is configured to identify and select a VM, in this
example VM 404, from a VM pool 450 that has been config-
ured to closely simulate a target operating environment (e.g.,
particular version of an OS with particular versions of certain
software installed therein) in which the content sample 414 is
to be analyzed. The scheduler 424 then launches VM 404 in
which monitoring module 416 is running and configured to
monitor activities and behavior of content sample 414. In
addition, monitoring module 416 maintains a persistent com-
munication channel with analysis module 428 of controller

US 9,251,343 B1

9

402 to communicate certain events or activities of content
sample 414 during the execution.

After the content sample 414 is executed, or at one or more
times during its execution depending on the embodiment, the
monitoring module 416 may trigger the generation by the
hash generator 426 of a new hash value for the boot content,
that is, the same content involved in the baseline hash, for
example, the MBR of the boot record 412, each new hash
value constituting a hash snapshot signature. Each hash snap-
shot signature may be stored in the event log 432. Monitoring
module 416 is configured to send a message via the commu-
nication channel to analysis module 428 to indicate comple-
tion of execution of the content sample 414.

In response to the generation of each hash snapshot signa-
ture, or during a designated analysis phase after the genera-
tion of one or more hash snapshot signatures for the content
sample 414, the analysis module 428 may compare the base-
line hash signature with the one or more snapshot signatures.
Any difference between the baseline signature and any of the
snapshot signatures is considered an indicator of a bootkit
being contained in the content sample 414. As a result, the
analysis module 428 generates a message indicative of the
presence of the bootkit, which may also contain information
regarding any other behavior detected by the monitoring
module 416 during execution of the content sample 414 that
constitutes an anomaly relative to normal behavior during
execution and thus would be indicative of other malicious
activity by the content sample 414. The message is sent to the
event log 432, which records the message contents as an event
triggered by content sample 414. Event log 432 records
events that have been selectively monitored and detected by
monitoring module 416. Content of the event log 432 may be
stored in a persistent storage as part of event log file(s) 448 of
VM disk file 442 associated with VM 404. The recorded
events may be analyzed by analysis module 428 based on a set
of rules or policies (not shown) to determine whether content
sample 414 is likely malicious (e.g., high probability of mali-
cious) and/or should be declared as malicious. In the event
that the content sample 414 is found to be malicious, that is,
that it contains at least a bootkit (if not also other malware,
depending on the detected anomalous activities), the content
sample 414 may be stored in the malicious content files 4490
the VM disk file 442. In addition, and alert generator 434 may
issue an alert so that a user or administrator may take appro-
priate steps in light of the malicious content being discovered.

Now, an alternative embodiment of the invention will be
described involving detecting bootkits, for example, on net-
work endpoints. FIG. 5 is a block diagram of a client-server
system 500 configured as a host computer system 502, e.g., a
first computer system, in accordance with one embodiment of
the present invention. Host computer system 502, sometimes
called a client or user device, typically includes a central
processing unit (CPU), e.g., a processor 508, an input/output
(I/O) interface 510, and a persistent storage 512. In one
embodiment, persistent storage 512 includes an operating
system 504, a boot record 505, and a bootkit detection logic or
agent 506.

The I/O interface 510 of host computer system 502 may be
connected (by cable or wireless connection) to standard
devices, such as one or more input devices 516 (e.g., a key-
board, a mouse), output devices 518 (e.g., a display device, a
printer), and as well as, one or more standard input/output
(I/O) devices 524 (e.g., touch screen, a USB memory device,
compact disk (CD) or DVD drive), storage devices 520, and
other peripheral devices 522, and, all of which may be oper-
able via device drivers installed in the operating system 504.

10

15

20

25

30

35

40

45

50

55

60

65

10

The I/O interface 510 of host computer system 502 is also
coupled by the network 526 to a server system 530 of client-
server system 500. Network 526 may be any network or
network system, including a proprietary network and the
Internet, or combinations thereof. Server system 530 may
includes a processor 534, a persistent storage 536, and a
network interface 538. Due to that connection between the
host computer system 502 and the network 526, the host
computer system 502 may be regarded as a network endpoint,
to which and from which network communications are sent.

Further, host computer system 502 is also coupled by net-
work 526 to a computer system 528, such as an attacker
computer system, of client-server system 500. The attacker
computer system 528 may have injected a bootkit into the
host computer system 502. In one embodiment, computer
system 528 is similar to host computer system 502 and, for
example, including a central processing unit, an input output
(I/0) interface, a persistent storage and one or more of the
other devices described above, or may be configured as a
server computer system similar to server computer system
530. The various hardware components of computer system
528 are not illustrated to avoid detracting from the principals
of'the invention. The particular type and configuration of host
computer system 502, computer system 528, and server sys-
tem 530 are not essential to the present invention.

In one embodiment of the invention, the bootkit detection
agent 506 is stored in memory 512 of host computer system
502 and executed on host computer system 502, as a utility or
computer application that runs over operating system 504, as
illustrated. In another embodiment, the bootkit detection sys-
tem 506 may be implemented within the operating system
504, for example, as a bootkit detection module. Of course,
the operating system may incorporate only some of the
aspects of the bootkit detection system, such as one or more of
an MBR reader, hash generator, hash comparator, and/or alert
generator, to name a few. Noteworthy, these embodiments
need not employ a virtual environment, but rather test for
bootkit activity during normal execution of the operating
system, utility or computer application within a computer
system.

FIG. 6 depicts a method 600 for detecting malicious boot-
kits using logic such as, for example, the bootkit detection
agent 506 of FIG. 5 implemented within a network endpoint,
in accordance with an embodiment of the invention. The
method 600 starts, in step 502, where logic reads one or more
boot record sectors from a bootable disk, for example, boot
record 505 of FIG. 5. The read boot record sectors should
include the boot locations, and thus the boot code, for
example, the MBR. In some embodiments, the logic reads
only the MBR. The logic then generates a baseline hash (H1),
which may be calculated using, for example, MDS5 hashing
algorithm, at a point of time (t,) on information contained in
the boot locations. In some embodiments, the baseline hash is
based only on the MBR. The baseline hash may serve as a
signature of the MBR as of a time preferably before the virtual
disk containing the MBR may have been exposed to any
malicious bootkit. The baseline hash is stored, for example, in
persistent storage 506 of F1G. 5. Preferably, the baseline hash
is stored in a trusted hardware device. In some embodiments,
the baseline hash is stored in an obfuscated value, preferably
under kernel software protection. In some embodiments of
the invention deployed within an endpoint having a hypervi-
sor, the baseline hash may be stored within the hypervisor. In
step 604, logic triggers testing for bootkit activity, which does
not require loading of a sample or use of virtual environment,
as was the case for the embodiment discussed in conjunction
with FIG. 3, since the testing is performed from within an

US 9,251,343 B1

11

endpoint for a bootkit that has taken residence therein (that is,
a bootkit that is installed and being executed within the com-
puter). The logic may trigger the testing pursuant to a sched-
ule, such as daily or weekly, or in response to a user input for
on-demand testing. In step 606, logic reads one on more boot
record sectors from the bootable disk yet again, and prefer-
ably the same MBR-containing sector as read to generate the
baseline hash. The logic generates a hash snapshot (H2) based
on the read sector(s) at a point of time (t,). The hash snapshot
is stored, preferably in association with the baseline hash. In
step 612, logic determines whether the baseline hash is the
different from the snapshot hash. If the baseline hash is the
same as the snapshot hash, the method 600 returns to step 604.
On the other hand, if the baseline hash is different from the
hash snapshot, in step 614, logic classifies the sample as
malicious, and issues an appropriate bootkit alert. Where the
computer may be running a virtual environment, the bootable
disk may be a virtual disk, and the hash values are computed
based on the boot content required to load an operating sys-
tem to be run in the virtual environment.

One embodiment ofthe invention takes advantage of “soft-
ware as a service” (“SaaS”) principles of business, in which a
bootkit detection system may be a cloud-based server provid-
ing services to one or more service subscribers. In this envi-
ronment, the computers under test are located at one or more
clients that avail themselves of the services of the bootkit
detection system located, for example, within the Internet or
within a proprietary network. In some embodiments, the ser-
vices of the bootkit detection system may be provided by an
IT service provider on behalf of a number of customers that
subscribe to its services, each of which having at least one
computer either located on the customer’s premised or
coupled to the customer’s trusted network and which is to be
tested for bootkits. The cloud-based bootkit detection system
may use an agent installed on an endpoint, as shown and
described in FIGS. 5 and 6, except portions of the method
may be performed in the cloud, such as hash storage, hash
comparison, and alert generation.

Controller Architecture

FIG. 7 illustrates a controller 700 in accordance with an
illustrative embodiment, which may implement a bootkit
detection system as described elsewhere herein. The control-
ler 700 may have at least a processor 710, a memory system
720, and a storage system 730, which are all coupled via an
interconnect, such as bus 732. The processor 710 executes
instructions. The terms, “execute” and “run”, as used herein,
are intended broadly to encompass the process of carrying out
instructions, such as software instructions. The processor 710
may be implemented as one or more processor cores, and may
be provided as a single device or as separate components. In
some embodiments the processor may be implemented as a
digital signal processor or application specific integrated cir-
cuits, and firmware may provide updatable logic. The
memory system 720 permanently or temporarily stores data.
The memory 720 may include, for example, RAM and/or
ROM. The persistent storage system 730 also permanently or
temporarily stores data. The storage system 730 may include,
for example, one or more hard drives and/or flash drives, or
other form of mass storage. The storage in memory 720 and
storage 730 is not to be regarded as being transitory in nature.

The controller 700 may also have a communication net-
work interface 740, an input/output (I/O) interface 750, and a
user interface 760. The communication network interface 740
may be coupled with a communication network 772 via a
communication medium 770. The communications network
interface 740 may communicate with other digital devices
(not shown) via the communications medium 770. The com-

10

15

20

25

30

35

40

45

50

55

60

65

12

munication interface 740 may include a network tap 840
(FIG. 8). The bus 720 may provide communications between
the communications network interface 740, the processor
710, the memory system 720, the storage system 730, the [/O
interface 750, and the user interface 760.

The 1/O interface 750 may include any device that can
receive input from or provide output to a user. The I/O inter-
face 750 may include, but is not limited to, a flash drive, a
compact disc (CD) drive, a digital versatile disc (DVD) drive,
or other type of I/O peripheral (not separately shown). The
user interface 760 may include, but is not limited to a key-
board, mouse, touch screen, keypad, biosensor, display moni-
tor or other human-machine interface (not separately shown)
to allow a user to control the controller 700. The display
monitor may include a screen on which is provided a com-
mand line interface or graphical user interface.

In various embodiments of the invention, a number of
different controllers (for example, each ofa type as illustrated
and described for controller 700 may be used to implement
various components of embodiments of the invention.
Computer Network System with Malicious Content Detec-
tion System

FIG. 8 is a block diagram of an illustrative computer net-
work system 800 having a malicious content detection system
850 in accordance with a further illustrative embodiment. The
malicious content detection system 850 may implement, for
example, the bootkit detection system 200 of FIG. 2 or the
bootkit detection system 900 of FIG. 9. The malicious content
detection system 850 is illustrated with a server device 810
and a client device 830, each coupled for communication via
a communication network 820.

Network content is an example of content for malicious
content detection purposes; however, other types of content
can also be applied. Network content may include any data
transmitted over a network (i.e., network data). Network data
may include text, software, images, audio, or other digital
data. An example of network content includes web content, or
any network data that may be transmitted using a Hypertext
Transfer Protocol (HTTP), HyperText Markup Language
(HTML) protocol, or be transmitted in a manner suitable for
display on a Web browser software application. Another
example of network content includes email messages, which
may be transmitted using an email protocol such as Simple
Mail Transfer Protocol (SMTP), Post Office Protocol version
3 (POP3), or Internet Message Access Protocol (IMAP4). A
further example of network content includes Instant Mes-
sages, which may be transmitted using an Instant Messaging
protocol such as Session Initiation Protocol (SIP) or Exten-
sible Messaging and Presence Protocol (XMPP). In addition,
network content may include any network data that is trans-
ferred using other data transfer protocols, such as File Trans-
fer Protocol (FTP).

The malicious network content detection system 850 may
monitor exchanges of network content (e.g., Web content) in
real-time rather than intercepting and holding the network
content until such time as it can determine whether the net-
work content includes malicious network content. The mali-
cious network content detection system 850 may be config-
ured to inspect exchanges of network content over the
communication network 828, identify suspicious network
content, and analyze the suspicious network content using a
virtual machine to detect malicious network content. The
communication network 820 may include a public computer
network such as the Internet, in which case a firewall 825 may
be interposed between the communication network 820 and
the client device 830. Alternatively, the communication net-
work may be a private computer network such as a wireless

US 9,251,343 B1

13

telecommunication network, wide area network, or local area
network, or a combination of networks. Though the commu-
nication network 820 may include any type of network and be
used to communicate different types of data, communications
of Web data will be discussed below for purposes of example.

The malicious network content detection system 850 is
shown as coupled with the network 820 by a network tap 840
(e.g., a data/packet capturing device). The network tap 840
may include a digital network tap configured to monitor net-
work data and provide a copy of the network data to the
malicious network content detection system 850. Network
data may comprise signals and data that are transmitted over
the communication network 820. The network tap 840 may
copy any portion of the network data, for example, any num-
ber of data packets from the network data. In embodiments
where the malicious content detection system 850 is imple-
mented as an dedicated appliance or a dedicated computer
system, the network tap 840 may include an assembly inte-
grated into the appliance or computer system that includes
network ports, network interface card and related logic (not
shown) for connecting to the communication network 820 to
non-disruptively “tap” traffic thereon and provide a copy of
the traffic to the heuristic module 860. In other embodiments,
the network tap 840 can be integrated into a firewall (e.g.,
using SCAN ports), router, switch or other network device
(not shown) or can be a standalone component, such as an
appropriate commercially available network tap. In virtual
environments, a virtual tap (vTAP) can be used to copy traffic
from virtual networks. The network tap 840 may also capture
metadata from the network data. The metadata may be asso-
ciated with the server device 810 and/or the client device 830.
For example, the metadata may identify the server device 810
and/or the client device 830. In some embodiments, the server
device 810 transmits metadata which is captured by the tap
815. In other embodiments, a heuristic module 860 (de-
scribed herein) may analyze data packets within the network
data in order to generate the metadata. The term, “content,” as
used herein may be construed to include the intercepted net-
work data and/or the metadata unless the context requires
otherwise.

The malicious network content detection system 825 may
include a heuristic module 860, a heuristics database 862, a
scheduler 870, a virtual machine pool 880, an analysis engine
882 and a reporting module 884. The heuristic module 860
receives the copy of the network data from the network tap
840 and applies heuristics to the data to determine if the
network data might contain suspicious network content. The
heuristics applied by the heuristic module 860 may be based
on data and/or rules stored in the heuristics database 862. The
heuristic module 860 may examine the image of the captured
content without executing or opening the captured content.
For example, the heuristic module 860 may examine the
metadata or attributes of the captured content and/or the code
image (e.g., a binary image of an executable) to determine
whether a certain portion of the captured content matches a
predetermined pattern or signature that is associated with a
particular type of malicious content. In one example, the
heuristic module 860 flags network data as suspicious after
applying a heuristic analysis. When a characteristic of the
packet, such as a sequence of characters or keyword, is iden-
tified that meets the conditions of a heuristic, a suspicious
characteristic of the network content is identified. The iden-
tified characteristic may be stored for reference and analysis.
In some embodiments, the entire packet may be inspected
(e.g., using deep packet inspection techniques) and multiple
characteristics may be identified before proceeding to the
next step. In some embodiments, the characteristic may be

25

40

45

55

14

determined as a result of an analysis across multiple packets
comprising the network content. A score related to a prob-
ability that the suspicious characteristic identified indicates
malicious network content is determined.

The heuristic module 860 may also provide a priority level
for the packet and/or the features present in the packet. The
scheduler 870 may then load and configure a virtual machine
from the virtual machine pool 870 in an order related to the
priority level, and dispatch the virtual machine to the analysis
engine 882 to process the suspicious network content. The
heuristic module 860 may provide the packet containing the
suspicious network content to the scheduler 870, along with a
list of the features present in the packet and the malicious
probability scores associated with each of those features.
Alternatively, the heuristic module 860 may provide a pointer
to the packet containing the suspicious network content to the
scheduler 870 such that the scheduler 870 may access the
packet via a memory shared with the heuristic module 860.

The scheduler 870 may identity the client device 830 and
retrieve a virtual machine from the virtual machine pool 880
corresponding to the client device 830. A virtual machine
may itself be executable software that is configured to mimic
the performance of a device (e.g., the client device 830).
Furthermore, the scheduler 870 may identify, for example, a
Web browser running on the client device 830, and retrieve a
virtual machine associated with the web browser. In some
embodiments, the heuristic module 860 transmits the meta-
data identifying the client device 830 to the scheduler 870. In
other embodiments, the scheduler 870 receives one or more
data packets of the network data from the heuristic module
860 and analyzes the one or more data packets to identify the
client device 830. In yet other embodiments, the metadata
may be received from the network tap 840.

The scheduler 870 may retrieve and configure the virtual
machine to mimic the pertinent performance characteristics
of the client device 830. In one example, the scheduler 870
configures the characteristics of the virtual machine to mimic
only those features of the client device 830 that are affected by
the network data copied by the network tap 840. The sched-
uler 870 may determine the features of the client device 830
that are affected by the network data by receiving and ana-
lyzing the network data from the network tap 840. Such
features of the client device 830 may include ports that are to
receive the network data, select device drivers that are to
respond to the network data, and any other devices coupled to
or contained within the client device 830 that can respond to
the network data. In other embodiments, the heuristic module
860 may determine the features of the client device 830 that
are affected by the network data by receiving and analyzing
the network data from the network tap 840. The heuristic
module 850 may then transmit the features of the client device
to the scheduler 870.

The virtual machine pool 870 may be configured to store
one or more virtual machines. The virtual machine pool 870
may include software and/or a storage medium capable of
storing software. In one example, the virtual machine pool
870 stores a single virtual machine that can be configured by
the scheduler 870 to mimic the performance of any client
device 830 on the communication network 820. The virtual
machine pool 870 may store any number of distinct virtual
machines that can be configured to simulate the performance
of'a wide variety of client devices 830.

The scheduler 870 may operate to test the network content
as to whether it may contain a bootkit as well as other mal-
ware. To detect a bootkit, the scheduler 870 may cause the
analysis engine 882 to perform the steps of method 300 of
FIG. 3. Accordingly, the analysis engine 882 generates the

US 9,251,343 B1

15

baseline hash, and awaits execution of the network content.
The analysis engine 882 simulates the receipt and/or execu-
tion of the network content to analyze the effects of the
network content upon the client device 830. The analysis
engine 882 may identify the effects of malware or malicious
network content within the virtual environment as provided
by the virtual machine. The analysis engine 882 may be
configured to monitor the virtual machine for indications that
the suspicious network content is in fact malicious network
content. In the case of a possible bootkit, such indications
may include changes in the boot content (e.g., the MBR) as
indicated by any differences between the baseline hash and
hash snapshots. In the case of other kinds of malware, such
indications may include unusual network transmissions,
unusual changes in performance, and the like.

The analysis engine 882 may flag the suspicious network
content as malicious network content according to the
observed behavior ofthe virtual machine. The analysis engine
882 may also generate a signature based on the malicious
network content, for example, applying a hashing algorithm
to the content, or a portion thereof, or using another relevant
identifier. Accordingly, the analysis engine may generate a
signature based on the malicious network content containing
abootkit. The reporting module 884 may issue alerts indicat-
ing the presence of malware, and, using pointers and other
reference information, identify the packets of the network
content containing the malware, for example, using the sig-
natures. Additionally, the server device 810 may be added to
a list of malicious network content providers, and future
network transmissions originating from the server device 810
may be blocked from reaching their intended destinations,
e.g., by firewall 825.

A malware probability score may be generated for each
sample of network content tested. The “static” detection or
analysis performed by the heuristic module 860 may generate
a first score (e.g., a static detection score) according to a first
scoring scheme or algorithm. The “dynamic” detection or
analysis performed by the analysis engine 882 may generate
a second score (e.g., a dynamic detection score) according to
a second scoring scheme or algorithm. The first and second
scores may be combined, according to a predetermined algo-
rithm, to derive a final score indicating the probability that a
malicious content suspect is indeed malicious or should be
declared or considered with high probability of malicious.

If a bootkit is discovered in the sample, the malware con-
tent detection system 850 may obtain additional information
regarding the malware infestation by permitting the malware
to execute within the virtual environment, monitoring its
attributes and effects. For example, the malware content
detection system 850 may gather threat intelligence such as
malicious domains, for example, Top Level Domains, pay-
loads, etc.

The computer network system 800 may also include a
further communication network 890, which couples the mali-
cious content detection system (MCDS) 850 with one or more
other MCDS, of which MCDS 892 and MCDS 894 are
shown, and a management system 896, which may be imple-
mented as a Web server having a Web interface. The commu-
nication network 890 may, in some embodiments, be coupled
for communication with or part of network 820. The manage-
ment system 896 is responsible for managing the MCDS 850,
892, 894 and providing updates to their operation systems and
software programs. Also, the management system 896 may
cause malware signatures generated by any ofthe MCDS 850,
892, 894 to be shared with one or more of the other MCDS
850, 892, 894, for example, on a subscription basis. More-
over, the malicious content detection system as described in

10

15

20

25

30

35

40

45

50

55

60

65

16
the foregoing embodiments may be incorporated into one or
more of'the MCDS 850, 892, 894, or into all of them, depend-
ing on the deployment. Also, the management system 896
itself or another dedicated computer station may incorporate
the malicious content detection system in deployments where
such detection is to be conducted at a centralized resource.

The management system 896 may manage the detection
systems 850 and 892-894 in a variety of ways. For example,
an administrator may activate or deactivate certain function-
alities of malicious content detection systems 850 and 892-
894 or alternatively, to distribute software updates such as
malicious content definition files (e.g., malicious signatures
or patterns) or rules, etc. Furthermore, a user may submit via
a Web interface suspicious content to be analyzed, for
example, by dedicated data analysis systems 892-894. More-
over, the detection systems 850 and 892-894 may share in
carrying out operations with respect to an particular sample of
network content. For example, static detection (using heuris-
tics) may be performed by detection system 850 at a client
site, while dynamic detection (using a virtual machine) of the
same content can be offloaded to the cloud, for example, and
performed by any of the other detection systems 892-894.
Moreover, in the case of bootkit detection, baseline hash and
hash snapshot generation may be performed by any of the
detection systems 892-894, and hash comparison can be oft-
loaded to the cloud, for example, and performed by any of the
other detection systems 892-894.

Alternative Embodiment

FIG. 9 depicts an alternative approach for detecting call-
backs, which may be used instead of the previously-described
signature-based approach, or, in some embodiments, in addi-
tion to that approach to increase the chances of detecting and
defeating bootkits. This approach involves hooking or other-
wise intercepting system calls and operations to persistent
storage that seek to modify the boot content, and, in some
embodiments, in particular, the MBR. This approach may use
the same components described above with respect to F1G. 4,
though, if a signature-based approach is not to be practiced,
there would be no need for a hash generator 426. Instead, the
monitoring module 416 (FIG. 4) may include an intercept
utility, whose operation will be described in the following
paragraphs.

Referring now to FIG. 9, the bootkit detection system 900
is configured for processing samples within an appropriate
virtual environment. The bootkit detection system 900 may
be implemented by controller, such as that shown in FIG. 7.
The bootkit detection system 900 may include an execution
environment 980 with at least one program instance (or pro-
cess) 984 and an operating system instance 986; persistent
storage 988; and a monitoring logic 990. The execution envi-
ronment 980 may be real environment or a virtual environ-
ment. Where a virtual environment, the program instance 984
and operating system instance 986 may together constitute a
guest image. The operating system 986 includes services
logic 995 for performing services on behalf of programs,
including program instance 984, such as network services,
and initiating accesses to persistent storage 988. The persis-
tent storage 988 includes a bootable storage device 999, such
as, for example, a bootable disk. The bootable storage device
999 may contain a boot record 996, having boot content
stored in boot locations. As mentioned above, the boot con-
tent includes executable code and data required to load an
operating system, for example, in this case, operating system
instance 986. Depending on the embodiment, the monitoring
logic 990 may be internal to the execution environment 980,

US 9,251,343 B1

17

which may be preferred where the execution environment is a
virtual environment, or external to the execution environment
980.

In operation, the monitoring logic 990 detects bootkit
activity in various ways, depending on the embodiment.
Where the samples are themselves executable programs, they
may be run as program instance 984, for example, over the
operating system instance 986. Where the samples are docu-
ments, such as PDF documents that may contain embedded
executable objects that may, possibly contain bootkits, they
may be loaded using an appropriate program, such as pro-
gram instance 984. Where the samples require a particular
computer application, such as a Web browser, the program
instance 984 may be that browser.

During testing of the samples, the monitoring logic 990
may perform any and all of the following:

(a) Intercept, as diagrammatically illustrated by intercept
“A”, user-mode API calls (arrow 994A) passed by the
program instance 984 to the operating system instance
986, which seek to execute WRITE, READ or APPEND
operations, or otherwise change the content of the boot
locations;

(b) Intercept, as diagrammatically illustrated by intercept
“B”, operations of a kernel-mode driver seeking to
modify system services description table (SSDT) main-
tained by services logic 995 so as to change the content
of the boot locations, which intercepting may be per-
formed by an operating system, by logic external to the
operating system, or by a virtual machine without
involving the operating system in the intercepting;

(c) Intercept, as diagrammatically illustrated by arrow “C”,
either or both of kernel-mode API calls (arrow 994A)
passed by the operating system instance 986 to persis-
tent storage 988, which seek to execute WRITE, READ
or APPEND operations, or otherwise change the content
of the boot locations; and/or operations of a file-system
level driver seeking to execute WRITE, READ or
APPEND operations, or otherwise change the content of
the boot locations;

(d) Intercept, as diagrammatically illustrated by arrow
“D”, operations of a volume-level driver seeking to
execute WRITE, READ or APPEND operations, or oth-
erwise change the content of the boot locations; and

(e) Intercept, as diagrammatically illustrated by arrow “E”,
operations of a virtual machine introspection logic (not
shown) seeking to change the content of the boot loca-
tions, which is applicable only in embodiments in which
the execution environment 980 is a virtual environment.

As used herein, “API calls” is a general term intended to
include system calls, RPC API calls, kernel-level API calls,
and user-level API calls, and may be intercepted by any
known hooking techniques. By hooking these API calls, and
extracting the nature of the commands contained therein and
their targeted addresses within persistent storage 988, the
monitoring logic 990 may be directly viewing bootkit activ-
ity.

If the monitoring logic 900 intercepts API calls or other
operations of a malicious nature, the sample may be classified
as containing a bootkit. If no such malicious activity is
observed, the sample may be classified as clean or requiring
further analysis. In some embodiments, the analysis module
428 (FIG. 4) may perform the classification of the sample as
clean or malicious. Thereafter, the classification may be
recorded in the event log 432 (FIG. 4) and, if malicious, the

10

15

20

25

30

40

45

50

60

65

18

alert generator 434 (FIG. 4) may issue an appropriate alert so
that further action may be taken with respect to the bootkit.

CONCLUSION

It should be understood that the operations performed by
the above-described illustrative embodiments are purely
exemplary and imply no particular order unless explicitly
required. Further, the operations may be used in any sequence
when appropriate and may be partially used. Embodiments
may employ various computer-implemented operations
involving data stored in computer systems. These operations
include physical manipulation of physical quantities. Usu-
ally, though not necessarily, these quantities take the form of
electrical, magnetic, or optical signals capable of being
stored, transferred, combined, compared, and otherwise
manipulated.

Any of'the operations described herein are useful machine
operations. The present invention also relates to a device or an
apparatus for performing these operations. The apparatus
may be specially constructed for the required purpose, or the
apparatus may be a general-purpose computer selectively
activated or configured by a computer program stored in the
computer. In particular, various general-purpose machines
may be used with computer programs written in accordance
with the teachings herein, or it may be more convenient to
construct a more specialized apparatus to perform the
required operations, or multiple apparatus each performing a
portion of the operations. Where apparatus or components of
apparatus are described herein as being coupled or connected
to other apparatus or other components, the connection may
be direct or indirect, unless the context requires otherwise.

The present invention may be embodied as computer read-
able code on a computer readable medium. The computer
readable medium is any data storage device that can store
data, which can be thereafter read by a computer system.
Examples of the computer readable medium include hard
drives, flash drives, read-only memory, random-access
memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and
other optical and non-optical data storage devices. The com-
puter readable medium can also be distributed over a net-
work-coupled computer system so that the computer readable
code is stored and executed in a distributed fashion. The
computer readable medium can also be distributed using a
switching fabric, such as used in compute farms.

The terms “logic”, “module”, “engine” and “unit” are rep-
resentative of hardware, firmware or software that is config-
ured to perform one or more functions. As hardware, these
components may include circuitry such as processing cir-
cuitry (e.g., a MiCroprocessor, one or more processor cores, a
programmable gate array, a microcontroller, an application
specific integrated circuit, etc.), receiver, transmitter and/or
transceiver circuitry, semiconductor memory, combinatorial
logic, or other types of electronic components. When imple-
mented in software, the logic, modules, engines, and units
may be in the form of one or more software modules, such as
executable code in the form of an executable application, an
operating system, an application programming interface
(API), a subroutine, a function, a procedure, an applet, a
servlet, a routine, source code, object code, a script, a shared
library/dynamic load library, or one or more instructions.
These software modules may be stored in any type of a
suitable non-transitory storage medium, or transitory storage
medium (e.g., electrical, optical, acoustical or other form of
propagated signals such as carrier waves, infrared signals, or
digital signals). Examples of non-transitory storage medium
may include, but are not limited or restricted to a program-

US 9,251,343 B1

19

mable circuit; a semiconductor memory; non-persistent stor-
age such as volatile memory (e.g., any type of random access
memory “RAM”); persistent storage such as non-volatile
memory (e.g., read-only memory “ROM”, power-backed
RAM, flash memory, phase-change memory, etc.), a solid-
state drive, hard disk drive, an optical disc drive, or a portable
memory device. As firmware, the executable code is stored in
persistent storage. Software is operational when executed by
processing circuitry. Execution may be in the form of direct
execution, emulation, or interpretation.

Lastly, the terms “or” and “and/or” as used herein are to be
interpreted as inclusive or meaning any one or any combina-
tion. Therefore, “A, B or C” or “A, B and/or C”” mean “any of
the following: A; B; C; A and B; A and C; B and C; A, B and
C.” An exception to this definition will occur only when a
combination of elements, functions, steps or acts are in some
way inherently mutually exclusive.

It will be appreciated by those of ordinary skill in the art
that modifications to and variations of the above-described
embodiments of a system and method of detecting bootkits
may be made without departing from the inventive concepts
disclosed herein. Accordingly, the specification and drawings
are to be regarded as illustrative rather than restrictive, and the
invention should not be viewed as limited except as by the
scope and spirit of the appended claims. It will be recognized
that the terms “comprising,” “including,” and “having,” as
used herein, are specifically intended to be read as open-
ended terms of art.

What is claimed is:

1. A computer-implemented method for detecting bootkit
resident on a computer, comprising:

performing an integrity check of a stored boot record com-

prising a master boot record, including:

generating, at a first time, and storing a baseline hash of
the master boot record, the baseline hash comprising
a baseline signature;

generating, at a second time, a first additional hash of the
master boot record during processing of a content
sample within a virtual machine, the second time
being subsequent to the first time and the first addi-
tional hash comprising a first hash snapshot;

comparing the baseline hash with the first hash snapshot
and storing information indicating that the baseline
hash and the first hash snapshot are not the same; and

based on the stored information, issuing an alert of a resi-

dent bootkit.

2. The computer-implemented method of claim 1, wherein
generating the first additional hash comprises generating a
series of additional hashes while processing the content
sample within the virtual machine, each hash included in the
series of additional hashes comprising a corresponding hash
snapshot, wherein a hash included in the series of additional
hashes is generated periodically.

3. The computer-implemented method of claim 1, wherein
generating the first additional hash comprises generating a
series of additional hashes while processing the content
sample within the virtual machine, each hash included in the
series of additional hashes comprising a corresponding hash
snapshot and generated at a separate time.

4. The computer-implemented method of claim 1, further
comprising providing a virtual machine and a virtual disk
storing the boot record and the master boot record, and pro-
cessing a content sample in the virtual machine to determine
whether the content sample comprises a bootkit.

5. The computer-implemented method of claim 4, further
comprising processing the content sample to detect bootkit

10

15

20

25

30

35

40

45

50

55

60

20

activity with respect to the boot record stored on a virtual disk
located inside a guest image processing on the virtual
machine.

6. The computer-implemented method of claim 4, further
comprising processing the content sample to detect bootkit
activity with respect to the boot record stored on a virtual disk
located external to a guest image executing on the virtual
machine.

7. The computer-implemented method of claim 1, wherein
integrity checking comprises executing a bootkit detecting
agent on an endpoint to access the boot record; and providing
the master boot record for performing the integrity check,
wherein the integrity check is performed to detect bootkits
resident on the endpoint.

8. The computer-implemented method of claim 1, wherein
a first computer generating the baseline hash and the first
additional hash;

and a second computer comparing the baseline hash and
the first additional hash.

9. The computer-implemented method of claim 1, wherein
the baseline hash and the first hash snapshot are generated
from only the master boot record.

10. The computer-implemented method of claim 1, further
comprising generating a new baseline hash after installing an
operating system update.

11. The computer-implemented method of claim 1, further
comprising storing the baseline hash as an obfuscated value.

12. The computer-implemented method of claim 1,
wherein an operating system instance running on a virtual
machine reports API calls seeking to change the contents of
the master boot record.

13. The computer-implemented method of claim 1, further
comprising:

generating, at a third time, a second additional hash of the
master boot record, the third time being subsequent to
the second time and the second additional has compris-
ing a second hash snapshot;

comparing the baseline hash with the second hash snapshot
and storing second information indicating that the base-
line hash and the second hash snapshot are not the same;
and

based on the stored second information, issuing the alert of
a resident bootkit.

14. The computer-implemented method of claim 13,
wherein the third time is after the processing of the content
sample has finished.

15. The computer-implemented method of claim 13,
wherein the third time is during the processing of the content
sample.

16. A system for detecting bootkit resident on a computer,
comprising:

an integrity checker operable in conjunction with a boot
record stored in persistent storage comprising a master
boot record, the integrity checker comprising:

a hash generator configured to generate, at a first time, and
store a baseline hash of the master boot record, the
baseline hash comprising a baseline signature the hash
generator being further configured to generate, at a sec-
ond time, a first additional hash of the master boot record
during processing of a content sample within a virtual
machine, the second time being subsequent to the first
time and the first additional hash comprising a first hash
snapshot;

a comparator configured to compare the baseline hash with
the first hash snapshot and storing information indicat-
ing that the baseline hash and the first hash snapshot are
not the same; and

US 9,251,343 B1

21

an alert generator configured to issue, based on the stored

information, an alert of a resident bootkit.

17. The system of claim 16, wherein the hash generator
hash snapshot is configured to generate a series of additional
hashes while processing the content sample within the virtual
machine, each hash included in the series of additional hashes
comprising a corresponding hash snapshot and generated at a
different point in time.

18. The system of claim 17, wherein the hash generator is
configured to generate a series of additional hashes while
processing the content sample within the virtual machine,
each hash included in the series of additional hashes compris-
ing a corresponding hash snapshot, wherein a hash included
the series of additional hashes is generated periodically.

19. The system of claim 16, further comprising a virtual
machine including a virtual disk having the boot record and
the master boot record, and configured to process a content
sample therein to determine whether the content sample com-
prises a bootkit.

20. The system of claim 16, further comprising a bootkit
detecting agent configured to execute within an endpoint to
access the boot record; and providing the master boot record
to the integrity checker, wherein the integrity checker is con-
figured to detect bootkits resident on the endpoint.

21. The computer-implemented method of claim 16,
wherein the hash generator is configured to generate the base-
line hash and the first hash snapshot from only the master boot
record.

22. A non-transitory machine-readable medium storing
instructions,

which when executed by a processor, cause the processor

to perform a method of bootkit detection, the instruc-
tions including:

instructions for generating, at a first time, and storing a

baseline hash of a master boot record, the baseline hash
comprising a baseline signature;
instructions for generating, at a second time, a first addi-
tional hash of a master boot record during processing of
a content sample within a virtual machine, the second
time being subsequent to the first time, the first addi-
tional hash comprising a first hash snapshot;

instructions for comparing the baseline hash with the first
hash snapshot and storing information indicating that
the baseline hash and the hash snapshot are not the same;
and

10

15

20

25

30

35

40

22

instructions for issuing, based on the stored information, an
alert of a resident bootkit.

23. The non-transitory machine-readable medium storing
instructions of claim 22, wherein the instructions further
comprise: instructions for executing a virtual machine includ-
ing a virtual disk having the boot record and the master boot
record, and processing a content sample therein to determine
whether the content sample comprises a bootkit.

24. The non-transitory machine-readable medium storing
instructions of claim 22, wherein the instructions further
comprise:

instructions for executing a bootkit detecting agent on an
endpoint to access the boot record;

instructions for providing at least one sector generating the
baseline hash and at least one hash snapshot; and

instructions to detect bootkits resident on the endpoint
based on comparing the baseline hash with at least one
hash snapshot.

25. A system for detecting a bootkit resident on a computer,

comprising:

a monitoring logic configured to detect a change or
attempted change to contents of the Moot locations of
persistent storage while a content sample is processed in
a virtual machine, wherein the detected change or
attempted change comprises evidence of a resident boot-
kit based on a comparison of (i) a baseline hash of the
contents of the boot locations generated prior to process-
ing the content sample in the virtual machine and (ii) a
hash of the contents of the boot locations generated
during processing of the content sample in the virtual
machine; and

an alert generator configured to issue, responsive to and in
communication with the monitoring logic, an alert
regarding the evidence of a resident bootkit.

26. The system of claim 25, wherein the monitoring logic
is configured to monitor computer operations seeking to
change the content of boot locations of persistent storage.

27. The system of claim 25, wherein the monitoring logic
comprising an intercept utility configured to intercept API
calls seeking to change the content of boot locations of per-
sistent storage.

28. The system of claim 25, further comprising a virtual
execution environment, and wherein the persistent storage
comprises virtual persistent storage.

#* #* #* #* #*

